NORMAL FORMS OF INVARIANT VECTOR FIELDS UNDER A FINITE GROUP ACTION Abstract
نویسنده
چکیده
FEDERICO SÁNCHEZ-BRINGAS Let I' be a finite subgroup of GL(n, (C) . This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of ((Cn, 0) . We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.
منابع مشابه
Some geometrical properties of the oscillator group
We consider the oscillator group equipped with a biinvariant Lorentzian metric. Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Left-invariant vector fields defining harmonic maps are...
متن کاملSemiinvariants of Finite Reflection Groups
Let G be a finite group of complex n× n unitary matrices generated by reflections acting on C. Let R be the ring of invariant polynomials, and χ be a multiplicative character of G. Let Ω be the R-module of χ-invariant differential forms. We define a multiplication in Ω and show that under this multiplication Ω has an exterior algebra structure. We also show how to extend the results to vector f...
متن کاملStatistical cosymplectic manifolds and their submanifolds
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...
متن کاملAutomatic Differentiation Tools in Computational Dynamical Systems
In this paper we describe a unified framework for the computation of power series expansions of invariant manifolds and normal forms of vector fields, and estimate the computational cost when applied to simple models. By simple we mean that the model can be written using a finite sequence of compositions of arithmetic operations and elementary functions. In this case, the tools of Automatic Dif...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کامل